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ABSTRACT
253 52

This work reports a study made of the stresses induced
in a thin cylindrical tube by int..rnal blast loading from a );
detonation wave. A method for the‘prediction'of tgé*cylindér'&
stress response has been developed on the basis of a simple
dynamic model of the vibrating system and an approximate
expression for the shape of the blast loading wave. Thé-
results. are demonstrated to,compare‘éatisfacterily with
experimental stress measurements.

‘This investigation wés associated with an experimental
“study of detpnatioﬁ Rpenomena in h&drogen-oxygén mixtures
éontained-inllarge di;meter cylindrical  vessels.” The safety
of the vessel is Eriticall& dependent upon the magnitude of
the hoop stresses induced in the cylinder walls by the detona-
tion process. A strain measuring system utilizing semiconductor
strain gauges waé employed to monitor‘the stresses, and these
results, in conjunction with the theoretical stress predic?

tions; provided a satisfactory check on the state of stress

in the metal. L “ ) . B /425;4’-
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NOMENCLATURE

- Constant (for strain gauges).

Young's Moculus of Elasticity.

HRUS

- Force

."r'

Gauge Factor (for strain gauges).
- Thickness of cylinder.
- Step function.
- Spring constant.
- Length of cylinder.
- Mass.
Pressure.
- Radius
- Radial acceleration
- Reflected wave pressure ratio
- Electrical resistance
- Sensitivity
~ Transform variable
-~ Time

- Decay time

£ 0o 0o D25 3 I >5E

- Displacement

Greek Symbols

C< - Temperature expansion coefficient
X” - Ratio of specific heats
€& - Strain level



- Non-linearity

- Angular measure

- Density

Dynamic time function
- Stress

- Efficiency

- Natural frequency

N E T 48D e

- Axial length

Subscripts
o - Initial condition
M .. Maximum
z - Axial
6

- Hoop

vi
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INTRCDUCTION

This work describes an experimental and analytical investi-
gation of stresses induced in dynamically loaded cylindrical
pressure vessels. The program was associated with studies of
gaseous detonation conducted at the Propulsion Dynamics Laboratory,
University of California, Berkeley. As part of these studies,
observations were made in detonating hydrogen-oxygen mixtures
contained in a 2 ft. diameter x 20 ft. long stainless steel
cylindrical vessel.

To provide an adequate margin of safety, it was decided co
restrict operation of the vessel so that the maximum stress
induced by the explosion would not exceed the yield stress of
the material. This was to be accomplished by placing an upper
limit on the initial pressure of the mixture for each condition
of initial temperature and composition. A series of detonation
tests were to be performed, at successively increased values of
initial pressure, until the maximum stress, deduced from strain
measurements made at selected locations on the vessel, approachec
the yield condition.

The dynamics of thin-walled cylinders have been studied by
a number of investigators, and among the first reported works
are the classical treatises of Lord Rayleigh (1) and Love (2).
These early references, however, are of limited application

since they are concerned with cylinders having infinitely thin

walls. A more useful and up-to-date treatment of thin-shell



theory can be found in the authoritative tex: of Timoshenko (3).

There are essentially two indepenaent ways in which a thin
cylinder responds to dynamic excitation. These are demonstrated
in Fig. 1 where they are classified ¢ (a) extensional vibra-
tions, and (b) bending modes.

Extensional vibrations, (a), are set up as a direct result
of symmetrical excitation in the radial and axial directions.
There is only a single mode of oscillation in each instance, that
is to say, the radial and axial vibrations tcke place at their
corresponding fundamental frequencies. The amplitudes of vibra-
tion are not oniv dependent on the geometry of the vessel, the
point of application of *he load, and its magnitude, but are
highly sensitive to the duration and pulseshape of the load.

The bending modes, (b), are systems of combined axial and
radial harmonic flexural vibrations. There are an infinite
number of mcdes for both the axial and radial directions and
hence an infinite number of combinations of these modes consti-
tuting this aspect of the cylinder's motion. The relative ampli-
tudes of the various modes are dependent on boundary conditions
such as the shell geometry and the method of excitation. In
the present application the excitation of the cylinder was
radially symmetric so effects from the bending modes were negli-
gible. The treatment of flexural vibrations in thin cylinders
by Arnold and Warburton (4), which was extended by Mixson and
Herr (5) to include the effect of internal static pressures in
the cylinders, provides a satisfactory background for this part

cf the analysis and is presented here in Appendix I.



The extensional response of @ pressure vessel to a single
pulse was discussed in recent papers by Baker (6), and Hodge (7).
Baker developed the basic equations of motion for a thin

sphere subjected to a linearly decaying radial pressure pulse,
accounting for both elastic snd plastic shell deformation. In

the elastic range the differential equations of motion are linear
and may be solved by Laplace transform techniques in a manner
similar to that for other vibrating systems, i.e. single degree

of freedom spring-mass or inductance-resistance networks.
Consideration of these analogous systems permits the attainment

of solutions for a variety of pulse loading wave-shapes. A
comprehensive treatment of such solutions is given in reference (8).
The a..alysis by Baker for the plastic range becomes fairly complex,
aud, in spite of a highly simplified model, it leads to non-

linear differential equations of motion which must be solved by
numerical techniques.

Hodge (7) considers only the plastic deformation of thin
cylinders since his primary concern was the point (I ultimate
failure. The paper is of interest, however, in that a variety
of blast-loading waveshapes are considered, giving a notable
expansion of applications.

Since it was specified earlier that the vessel was not to
be stressed beyond its yield pocint, the present analysis is
restricted to the elastic range. Theoretical stress predictions
based on the dynamic behavior of a simple dynamic model are

correlated to experimental measurements of strain obtained by use



of semiconductor strain gauges on the outer surface of the vessel.
Theoretical and experimental agreement is shown to be satisfactory,
thus establishing a useful design approach for future situations
of this kind, which might include, for example, the design of
safety vessels for proof testing of high pressure equipment, or
the design of rocket motor thrust chambers whefe the design must
provide for the possibility of internal explosions. It should

be noted that application of this theory is not restrictad to
cylinders. A simple change of the coordinate system or the
boundary conditions of the equations would mzke the ﬁethod appli-

cable to almost any mathematically definable thin shell design.
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THEORY

The dynamic response of the vessel is determined from the
equations of extensional motion of a cylindrical surface under
the action of a radially accing force which are derived in
generalized form by Timoshenko (3).

Figure 2 sﬁows the segment of cylinder considered, a curved-
face rectangle of'ﬁidth rd© and lengthdz . A time varying
pressure impulse,;)(t), acts radially outwards on the element,
giving rise to two major stresses, an axial stress, Oz , and
a hoop stress, O . Bending stresses caused by p (t) will be
negligible provided that the analysis is restricted to long
uniform cylinders and that end effects are not considered.

Static stresses which result from a pressure difference across
the walls of the cylinder are neglected, but may be accounted

for in the general stress system by simple addition in the event
they acquiie significant magnitude.

Before proceeding, some realistic forms of dynamic loading
- are examined. This particular investigation calls for an examina-
tion of blast-type lbadings, ﬁhich, generally speaking, are
considered as a single application of a 1érge force for a very
short period of time. Subh.loédings afe specified analytically
in terms of their peak pressure, P, , and total time of duration
or decéy, T . Several blast-type loadihg pulse-shapes are shown
in Fig. 3, arranged in order of successively better approxima-

tions to the measured wave shapes of typical blasts.



"The rectangular step function, (A), provides the simplest
boundary conditions for solution of the equaiions of moticn,
but is the least acéurate representation of a cypical blast
load. The pulses with linear and exponential decays, (B)
and (C ), can generally be used as good approximations t§ the
loading pulse-shape, and provide reasonably straightforward
solutions to the equations of motion. The best approximations
to a blast load, ([))i and (E), are unfortunately in too complex:
'a mathematical form to permit easy matching to experimental
results, i.e, there is considerable difficulty involved in
finding the best wvalues of the constants for the mathematical
fofms when matching experimental data. |
In the following analysis, the linear decay pulse,(B), has
been used as an example -throughout. Ekperi;nce has shown that
this waveshape approximates well to the type of‘blast loading -
associated with gaseous detonation processes. In AppendiX‘iI,
solutions to the equations of motion~afé given for the other
waveshapes shown in Fig. 3. l
Consider, now, the hoop and axial stresses induced in th-
Acylinder by a pressure loading function P(t). In this example ‘
 it is taken_as sawtooth wave shape, pulse (B) as shown in Fig. 3, -
which ig given by: | . N
p(t) = [ pm (A=t/T) Jor 02t 4T
| o, - for t 2T

1 -

where | is thé total time of duration of-;he?pﬁlse, gné pmits

maximum pressure.

Ao - ey e e et e



~d

Hoop Stress Og

Figure 2 shows a small segment of cvlinder under the

action cf a radial pressure fD(t), giving rise to a hoop stress
O . In order to find the radizl accelerarion, & , from

ZF=mt , the radial forces may be equated thus giving us

the ecuation of motion:
\ 2 by
~2q (5nnd—g~‘)hdz:{—p(r‘dedz,~ = phrd&dz dL/dt (1)

which, upon simplification becomes:

Do+ wu = p(t)/ph (2)

The complete solution to equation (2) may be found in Appendix II,

but here only the final results will be quoted.
When p (t) is given by the sawtooth function, ( ), the

hoop stress, determined by the method of laplace transform is:

%= (pnr/h) de )

where
qSe - [1~1/T“c05w9t+—%’éit~ OzteT
A-copusel £ (1- 2060 ) cos oyt | ta-rm
[( eoe )famwg (-2l ot ,

and © is the cylinder radiqs,V\ its thickness, and Wy its natural

hoop frequency of vibration.

It should be noted that the solution for &; is composed of

two parts—a paramete?(%ﬂ%;)corresponding to the hoop stress



induced in a thin cylinder by a static internal pressure of
magnitude, P"" and a dynamic time function,q% , representing
the correction to Cg required for the specified time variant

leoading.

Axial Stress

Axial vibrations of the vessel ar. set up when the detonatim
wave reflects from the end wall at the end of the cylinder oppo-
site to the ignitor. In this case the response of the vessel
can be compared ideally to the motion of a spring-mass-system,
Fig. 4, where: 4

the spring constant of cylinder = k = A EA_ = ZTT'I"hE./L

the mass of system = mass of the end-flange = M

The equation of motion For this system is:

mx + kX

F(t) (5)

where here x==llz_, the displacement from equilibrium position.
For the sawtoothed impulse example, the R.H.S. of Eq. (5) is:

F(t) = pOA = [ RrrrPpn (L- 1) for 0414 T
O for £ 3T

where K accounts for the difference in peak amplitudes between
the incident and reflected pressure pulses. Thus, if p,.is the
incident wave peak pressure, then the reflected wave will have
a peak pressure of P\Pm

When dealing with the reflection of detonation waves from

a solid end wall, theoretical prediction of the value of R is



virtually impossible due to the complexity of the interaction
process. KR must then be found by comparing direct measure-
ments of pressure taken at the side wall and end wall of the
cylinder. Tre case may arise, however, of a simple (non-
reactive) shock wave uniergoing the reflection process and, for
this case, gasdynamic theory can provide an estimation of the
value of K . The shock reflection process is depicted in the
space-time plane, Fig. 5.
. - Usipg the form given by reference (9), the ratio of the

reflected to incident wave pressures is:

227h
R-R

i
‘ol 6R/ptl

where P, is the pressure of the gas at rest, Py the pressure

j—or' = 1.4

behind the incident shock wave, and Fé the pressure behind the
reflected wave.
In terms of the incident wave pressure ratio, then, R can

be expressed as:
&R /p,-14
Fi/&-& 6

The equation of motion, (5), can then be written in the form:
2
2
d Uz/d",;e-k kU\z/m = Rrr pm(t)/m (6)

which by comparison to Eq. (2) leads, by inspection, to the

R = P =
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following expression for the avial strecses:

A;cial stress, O, = %ﬁr_‘9“‘ (7)

(]:i-° t/T - cos wnt 4 %Tffi—:&']for OcteT

where

) . -
[(1-Co5wi£) sin we T - (L 51/_1_}___ Cf"w‘t_]

Wz T/
§or T>T

0z, being the natural axial frequency of vibration of the cylinder.
As was the case with the hoop stress, it can be seen that the
solution is comprised of two parts - one a static parameter
corresponding to the axial stress that would be induced in a
cylinder loaded with a static pressure of magnitude (F&pwo and
the other a dynamic loading function ?& » glviug the correction
to Cﬂ; for the given dynamic load.

Apart from the solutions for the hoop and axial stresses just
considered, Appendix II gives the solutions for the other wave-
.shapes shown in Fig. 3. In each case it is found tl.at the solu-
tion is Jn the same form, a static stress parameter multiplied
by a dynamic loc:'ng function. Graphs are given in the Appendix
of these finctions for most of the lcadings considerec. the

plots being on a non-dimensional amplitude-time coordinate system.
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EXPERIMENTAL APPARATUS

Test Vessel

Figure 5 shows a side elevation of che detonation tube, a
20 ft. long x 2 ft., diameter stainless steel cylinder of 3/8"
wall thickness, closed at one end by a solid plate, and at the
other by a removable flange. The vessel is supported at three
places, as indicated on the drawing. A viewing section of glass
portholes intended for Schlieren visualization of the flow
extends alond nearly half the length of the cylinder. In
addition, the vessel is tapped in numerous locations wich ports
to accept pressure transducers, ionization pick-ups, thermo-
couples, etc.

Provision is made for heating and cooling the vessel in
order to run tests in the range -200 to +20G°F, this being
effected by electric heating rods attached to the vessel's
outer skin and a liquid nitrogen spray cooling system. The
instrumented vessel is shown in Fig. 7.

The procedure for running detonation experiments was to
first evacuate the vessel to a pressure of a few microns of Hg,
next fill with a pre-mixed charge of hydrogen and oxygen to
the desired initial pressure, then to initiate the detonation
prccess with a small charge of solid explosive. A detonation
wave would be quickly established and travel down the length
of the vessel to be ref’ected at the far end wall.

Of the many instruments used in these tests to observe the

detonation process, only the pressure and strain recorders are
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of direct interest here, although temperature measurements
were required in conjunction with the strain measurements and

ionization pick-ups were needed to trigger this instrumentation.

Pressure Measurement

The pressure-time history of the detonation waves at 2 ft.
intervals along the length of the vessel and at the end wall
was recorded by a series of plezo-electric pressure transducers.
The~particular transducers used were Kistler type 601 quartz
crystal pick-ups, with a sensing element 1/8" diameter, a
pressure range of 1 - 5000 psi, a sensitivity of 0.5/5u Cb/psi,
and a rise time of 3‘/ASQC~ The output from the transducers

were recorded using Tektronix 535 and 551 oscilloscopes.

Strain Measurement

Measurements of the strains produced in the detonation tube
were made using straim gauges located at a number of points on
the outer surface of the vessel. A few gauges were attached at
critically stressed points (on corner welds and arcund the
entrance ports), but these were solely for safety reasons and
need not be further considered here. The remaining gauges .
were affixed at locations 6 ft.,, 14 ft., and 18 ft. from the closed
end, on reasonably uncluttered parts of the vessel's skin where
surfaée discontinuities would not affect the results. At each
location the gauges were mounted in pairs, one to read axial and

the other radial strains at each of the measuring staticns.



Choice of the strain gauge instrumentation lay essentially
between:

(a) Wire grid gauges of a special type having their backing
strip and insulation made of a suitable material to withstand
the wide range of temperatures over which the tests would be
conducted. It is unecessary, when using this type of gauge, to
amplify their output considerabiy - this requirement for ampli-
fiers unfortunately increasing the overall cost of the instru-
mentation quite considerably.

(b) Semiconductor strain gauges for which no additional
amplification is necessary - the output from this type of gauge
is surficient toc permit direct connection to be made to an
oscilloscope with high sensitivity amplifiers.

The semiconductor system was chosen as being most suitable
for this application , and Baldwin-Lima-Hamllton type SPB2-18-12
strain gauges were selected. Fuil detaiis of the installation
and calibration of the gauges is given in Appendix II.

The recording system for preservation of permanent records
of the strain history were obtained using Tektronix 535 or 551
oscilloscopes equiped with Polaroid cameras. The comrlete

strain recording system is shown in outiine in Fig. 8.



14

FXPERIMENTAL RESULTS

The series of stress measurements reported here wac run
using stoichiocmetric mixtures of hydrogen and oxygen in the
pressure range 100 to 200 mm Hg. Simultaneous readings were
taken from the pressure and strain gauges during each test,
the outputs being recorded on oscilloscopes (and preserved by
photograﬁhs) which were triggered at the time of passage of the
detonation wave by ilonization probes. Measurement of the time
intervals between successive pressure traces permitted the
detonation wave to be traced as it passed down the cylinder
and was reflected at the end wall. Such a trace is shown cn
the time-distance plane in Fig. 9. In this case, the triggering
ionization probe was at station 2, and the wave's passage plotted
from pressure records made at stations 3, 5, 7, and ¢ which are
shown in Fig. 26, together with strain records made at stations 3,
7, and 9. Figure 10 is typical of measurements made at 100 mm Hg
initial pressure; a typical set of measurements for 200 mm lig
is given In Fig. 11; Fig. 12 shows further results for 100 mm Hg,
the oscilloscope sweeptime being extended in this case to show
better the low frequency axial vibrations.

Analysis of the pressure records for a number of experi. ients
made at the same initial conditions permits plotting of the
variation of the peak wave pressure along the detonation tube

(Fig. 13).
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Similarly the reflected wave pressure is found from
the pressure records made at the end wall of the vessei.
These are plotted as a function of initial mixture pressure,
Fig. 14. Figures 13 and 14 clearly indicate the effect of
using the Primacord explosive to initiate the detonation
process - the detonation wave is "overdriven" by the explosive
charge, resulting in wave pressures generally higher than those

predicted by the Chapman-Jouguet detonation theory, reference (9).
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ANALYSIS AND DISCUSS10ON

The dynamic response of the cylinder in terms of the hoop
and axial stresses can be predicted from Eqs. (3) and (7) pro-
vided the specific boundary conditions can be supplied. These
conditions are:

(a) Wy and &), the hoop and axial natural frequencies

of the vessle, respectively, which may be found
from the physical dimensions and material properties
of the cylinder.

(b) the equation for the pressure loading function, PCt),

here assumed to be a sawtooth pulseshape.
(c) the magnitude of the peak wave pressure, which may be
obtained directly from Figs. 13 and 14.

{d) the decav time of the pressure pulse, also obtained
from the pressure records ir. the munner explained
in Fig. 15,

Evaluating these, in order, for the case in question:

(a) the expression for the natural hoop frequency, C*)o ,

is given by Eq. (A2.5) in Appendix II:

w.g--_-ﬁ;;;.

where for type 304 stainless steel,
E =29 x 10% pst

0.287 1b/in>
r

i

the mean radius of the cylinder = 12.19 in.



(b)

(c)

(d)
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so that
Wy = 16,316 radians/sec = 2,597 cycles/sec.
The axial natural frequency,Wz, is given by Eq. (A2.16),

Appendix II as:

where
™ = mass of vessel end cap = 94G.7 1b
L = length of vessel = 240 in.
h = wall thickness of vessel = 0.375 in.
then q
LWy, =W9_rr x 12.19 x 0.375 x 29 x 10° x 386
940.7 x 240

= 1,1935 radians/sec = 191 cycles/sec.
pressure loading function,
Pt = | pu(4=YT) 0t eT
o | t>T
peak pressure,F%q. In order to permit use of the
response curves (shortly to be obtained) for a range
of peak pressures, [PM is taken as unity.
decay time,hr', of pressure pulse. The experimental
results obtained from the present test shows that

the range 0.1 { | < 10.0 milliseconds.

Substituting these values in Eqs. (3) and (4), (7) and (8)

yields the appropriate expressions for the hood and axial

stresses.



18

Hoop Stress

% = (Pr0h)de = #o75— 9 Pt @

where

(" -
- T ’ v, oin (636 t)
5259 = [i y cos (16.216T) + (16.26T) J

for‘ O<tLT (4)
|-cos16.316T _ein |626T. ~
E( 636 T >6m<‘6'%t) ‘O TlereT )w"‘(\bblb‘t‘
for t >T

and both T and T are to be given in milliseconds.

The calculation of ¢5 is almost identical to the calcula-
‘tion of ¢(t) which is given in detail in Appendix II. The
computer program for this computation, as shown in Table 1, is
for a range of pulse decay times from 1.0%4 | £ 10 milliseconds.
Figure 16 shows ihe resulting computer output, which is in the
form of ~ graph of ‘?Se versus time 1 yielding a family of curves
for the various values of d cay time, | . Figure 17 shows a
similer plot of ) for the range of decay times 0.1€ T 1.0 milli-
seconds. Values of 959 obtained from these curves may be substi-
tuted directly into Eq. (3) to obtain the actual value of the

hoop stress, G'Q' .



Axial Stress

Equation (7) gives: &, = R;gr : ¢z,
(R pw) 12.19 -
- -5“7)75 B poi

where, from Eq. (8),

b -aj[1—t/-r—éoe(l.l%f)m-?'Q{;ggﬂ?” ] octeT

1-co5(1.1925 t)) oin (11925 1)

(1.1925T)
(1 ) e (ee] 15T

where again both T and T are to be specified in mill;seconds,
In the same manner as for thé hoop stress #: has been

computed for a range of decay times 1.0 € | < ld milliseconds

using an electrenic computer. .Tae resulting graph is shown

in Fig. 19, where ¢z. against time, t . Values of 45; obtained

from this graph may be substituted directly into Eq. (7) to

obtain the actual value of axial stress, & .

19
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COMPARISON OF THECRY AND EXPERIMENT

Results for the dynamic stresses in the cylinder are
now available in two forms which will be compared in detail.
These are (a) purely experimental stiain measurements, and
(b) theor: zical stress predictions which are still partly
experimer tal in thgt they depend upon the pressure measurements
to obtain the input waveshape.

Comparison of Measured and Predicted Freguencies of Vibration

Collected measured valias of the natural hoop and axial
frequencies are givén in Tabie 2 together with the ~orrssponding
calculated values. The form of the loading function does not
appear in the expressions for the vessel's natural frequencies -
Eqs. (A2.5) and (A2.16) in Appendix II. However there are
several other ways in which inaccuracies may be expected to
appear in these values, for example:

a) Variations sre to be expected in the steel manufacturer's
quoted values of the cylinder material's properties,
not only for the vessel as a whole, but also from
point to point in the material..-

b) Dimensional accuracy in the cylinder's skin thickness,
h , 1s known to be poor. The nominal thickness of
3/8" may vary by as much as 1 1/16" which, for the
axial frequency, would result in considerable variation
from the calculated value. The hoop natural f-equency

is independent of skin thickness, provided this dimension



is vary small compared with the cylinder's radius.

¢) In measurement of the mass of the vessel’s end cap
in ordcr to find the axial natural frequency, it
is difficult to determine how much of the mass of the
end flange and clamping bolts should be included, an
additional problem being the welding between the
cylinder and end flange which has obliterated the
transition point and locally increased the cylinder's

"spring-constant".

Comparison of Measured and Predicted Maximum Stress Amplitudes

The experimental and predicted values of the maximum |
tensile stress amplitudes are presented in Table 3, and shown _
graphically in Fig. 19.

Predicted values require specification of the input loading
function, which was found in each case by reference to the rele-
vant pressure record, using the sawtooth approximation to
specify the function mathematically. Use of Figs. 16, 17 and
18 for the hoop and axial dynamic time functions led immcdiately

to the predicted values of the maximum stresses.

a) Hoop stress

In comparing the experimental and predicted values, it
will be seen that there is good agreement for the results
obtained at position 9, but values measured at position 7 fall
approximately 257 below the predict®d values. This variation
is most probably due to an artificial strengthening of the
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cylinder in the wvicinity of position 7 by either an increast
in the skin thickness or through the ribbing that supports an
outer skin around the vessel.

b) Axial stress

Here chere is considerable verciat!~n between.experimental
and calculated results, In each case the measured value is
between 1/5 and 1/10 of that calculcted. The discrepancy
indicates that the transfer of energy between the end cap and
cylinder walls is cons.derably less efficient than was antici-
pated. More light is chrown on this result by comparison of the

dynamic waveforms, which are discussed in the following section.

Comparison of Dynamic Waveforms

a) Hoop stress

In Fig. 20 are reproduced the measured strain gauge outputs
from Test CD 149 together with the calculated curve shown to
the same scale from fig. 16. As may be seen, agreement 1s good
.or the first 0.7 milliseconds, after which time the arrival of
the reflected shock wave adds an additiomal loading to the
system. The effect of the additional stressing due to the
reflected shock wave could be inc¢luded into thé analysis, but
the results for the time preceding the arrival of the reflected
shock give all the data required.

Normally, as may fe seen from the analytical and experi-
mental results, the nwst serious stressing occurs in the first

half cycle of the dynmaic response, when the dynamic loading
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function,f%, tends toward its upper limit of 2.0. In this
particular case, however, a second loading pulse in the form

of the reflected shock wave, was added to the motion before

the effect of the first loading pulse had decayed, consequently
cuasing the most serlous stressing to occur during the first
cvcle of the response corresponding to the arrival of the
second loading pulse.

The good agreement between the predicted and measured
waveforms and peak amplitudes for the hoop stresses (at location 9)
is satisfying, since it is these hoop stress that will cause
the ultimate failure of the cylinder. The axial stresses, 3s
measured, are bnly 50 to 60% of the hoop stress, magnitudes.

In any general stress system the component stresses must be
summed, taking the Poisson's ratio effect into account, in order
to find the magnitude of the maximum stress. Here, however,

the twc component stresses take place on different time scales

and consequently never require their additive effect to be
accounted for. The hoop stresses are excited first, reaching

peak amplitude after approximately 0.2 milliseconds, and are
substantially decayed by the timz the axial stresses have

reacﬁed maximum amplitude approximately 12 milliseconds later.
Thus, the record on the axial strsain gauge AA, shown together with
the hoop recoxrd, BB, in Figz. 20 is purely a Poisson's ratio effect,
given by:

€, = (-—-0.2,.7)60 (9)
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b) Axial stress

The strain record for axial motion shown in Fig. 12,

.8 recorded by gauge AA, may be compared with the calculated
curve for axial response from Fig. 18, using tlie particular
curve for a 2.0 millisecond decay time. The calculated curve,
it may be seen, is almost exactly a pure sine wave of peak
amplitude ffz(max) = 1,0,

Examination of the experimental trace shows that from the
second cycle onward the response is sinusoidal. The first cycle,
however, is of counsiderably less amplitude, indicating a relatively
slow tramrsfer of energy from end plate to cylinder. This effect,
and the diminution ir stress amplitude noted previously
would indicate that the simple model for axial motion (Fig. 4)
should be somehow improved to account for the energy transfer
from end plate to cylinder.

The gradual buildup of response amplitude is typical of
the response of a two mass - two spring system, which could
here be used as & model by considering the flange securing bolts
as the second spring. Such a model is shown in Fig. 21, but
is not examined in detail since it has already been determined
that, in this case, the axial stressing does not produce the

critical stresses in the cylinder.
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CONCLUSIONS

A theory predicting the dynamic response of a cylindricat
vessel under the action of a symmetric radial blast load has
been developed. In addition, experimental data have been obtained
for the dynamic stress response, the tests having bcen carried
out on a 20 ft. long x 2 ft. diameter cylinde~ loaded by
internal detonation of a mixture of hydrogen and oxygen. The
response waveforms and peak stress loading in the critical hoop
direction show close agreement between theory and experiment.

An important aspect of the experimental work was the use of
semiconductor strain gauges - a relatively new technique for
stress analysis. 1In evaluation of these gauges it must be
said that their performarce was most satisfactory, and apart
from their tedious calibration requirements, represent a very

significant step forward in strain gauge technology.
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APPENDIX I

HARMONIC FLEXURAL VIBRATIONS

There are, as was explained in the Introduction, two salient
types of vibration pertaining to cylindrical shells: (a) exten-
sional vibrations, as have been examined in the preceding text,
and (b} bending or flexural modes.

It is evident that whereas the extensional vibrations, (a),
depend upon extension and some slight amount of bending, the
flexural modes, (b), are associated only with bending and do not
produce any appreciable extension or contraction of the surface
midway between the inside and outside cylinder walls. Practical
experience shows that a cylinder can easily be deformed by pressing
it inward at the periphery (for example at two opposite points,
illustrating the 2nd radial mode ...see Fig. 1). The operation
is clearly one associated with bending alone, since any extension
of the middle surface would require considerable force to produce
it.

The effect of any impulse loading on a cylinder will be to
excite both forms of vibration, the relative vibrational amplitudes
for a given cylinder being a function of the magnitude, the wave-
shape, and the point of application of the load. Taking each
vibrational form in turn, the tvpe of loading to which each is

most susceptible can be examined.



Bending modes are, of course, most easily‘excited by a
periodic force, especially when the frequency of the excitation is
the fundamental or some harmonic natural frequency of the cylinder.
In this case resonance can prodvce a rapid buildup of response
amplitude leading eventually to the cylinder’s failure. However,
we are here onliy coucerned with impact loadings, where the coi.dition
of resonance is never encountered.

Flexural vibrations, then, will not cause serious stressing
of the vessel in this application, and, in fact, could be neglncted
if their effect did not show in the strain and pressure records.
While producing almost no strain in the middle surface cof the
cylinder, some effect will be detectable cn the inner or outer
surfaces, so it is to be expected that these visrations will appear
as high frequency signals superimposed on the strain gauge records
of extensional vibrations. |

It is of interest tc note that the piezo-electric pressure
transducers used in these tests will also be susceptible to
flexural vibratiéns. These transducers are accelerat.on sensitive
through the inertia induced piezo-electric effect, so that, as
these transducers are rigidly attached to the cylinder walls,
flexural vibrations will induce an additional signal superimposed
onto the response to the pressure pulse.

The acceleration induced signal on both strain gauge and
pressure records was generally disregarded in analysis of data as
the amplitudes involved were always small. The signal could be

distinguished easily from the signal corresponding to other data
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by the frequencies at which it anpeared; these were easily found
under test conditions by recording the.output from a microphone
pcsitioned near the vessel, the creation of sound waves at the
same frequencies being another direct consequence of this form

ot vibration.

Theory of Harmonic Vibrations

Ifm is the number of the radial mode (= half the number of
‘nodes), and n the number of waves standing in the axial length of
the tube, any combination of N andm can combine to form a vibra-
tion pattern, with external factors such as surface discontinuities,
 vessel supports, etc., determining which vibrational patterns will
be present and in what proportions,

From the external conditions in this instance, it is possible
to predict that (2) due to the three point method of support of
the vessel (see Fig. 6) it is probable that the even axial modes
will predominate (i.e. M = 2,4,6, etc.); (b) the method of excita-
tion being an axially moving stress pulse, it is equally likely
for the radial mode to be any of those possible, probably the
higher frequencies being excited more easily than the low.

The following theory follows the approach of Arnold and
Warburton (4), whizh itself is an adaptation of love's classic
theory (2). The effect of the static pressure difference across
the walls of thé cylinder is discussed by Mixsen and Herr (5).
but calculation of the effect in this instance showed that it could

be neglected with no lecss of accuracy to the analysis.
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As it stands, the vessel under consideration is somewhat
awkward to analyze since one end is closed by a disc-like inte-
gral closure and the other by a flange and associated removable
end cap. The end conditions play an important role in determining
the axial vibration mode and must be carefully considered. Arnold
and Warburton account for end conditions by a factor modifying
the value of A , the wavelength factor, which, for freely supported

ends is:

A= manm, (AL.D

A

where 8 is the mean cylinder radius, | the cylinder length, and
™ the number of the axial mode.
The other extreme case is the condition of fixed ends, when

the wavelength factor becomes:

)\,=—TIIQ’«-'(WL1'Q?D) (A1.2)

Somewhere between these two cases lie *he flanged arnd the
drum-closed end conditions. Experimental evidence led to the

following empirical expression to account for thase:

A= T.%':.(m—i-o,b—zw) (A1.3)

where N is the wall thickness of the cylinder and d is an

"equivalent diameter" for the end flange such that

‘4 /s ’
4= [T b pan]” |

where ra = flange outer radius/flange inner radius,C# is the flange
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thickness, ani/ﬁ is Poisson's ratio.
Equation (Al.3) is the expression for a flanqed end, and
does not account for the removable end cap which, however, has

been shown experimentally to have negligible effect on the wave-

length factor.

In addition to‘z,, the wavelength factor, Arnold and Warburton

define a frequency factor, A, given by:
2[f~yy ? -
A = 4—‘:1'3((190“[1 ] ) « (AL.4)

where‘f is the vibrational frequency, o the wsterial density, and

E the modulus of elasticity.
Re+arranging (AlL.4) to give an expression for frequen"‘,f ,

and substituting the following values for the cylinder used in this

experimeént: |
o =12.19 in. A= 0.29
L =240 in. E =2 x10° pst
d  =2.85 in, h  =0.375 in.
b =1.295 d  =1.565 in.

9

then :f:x _V‘-A_ ’ Eq

217 /na?:(T'ﬁd‘a)

- (2_70. \o")ﬁ c.p-o.

ad )= 0I5 [m+ 0.18D5]



The frequency factor, Z& » 18 determined from the fol'owing
equation, derived in the Appendix to Arnold and Warburton's

papar, (4):

1~

-+
!

A =

..

(Ko} Ke
\127/ ZZ' (AL.5)
i~y

’

~

ad 4
where K_=0.225 )¢, + 0 22BN +H) +n (1-8%—2rf)]
K =0255(\2+n )+ 127128 + 02860t | 2593 (0% + i

K,=1+1.255( % +n")

with/ég = fj;ﬁagé' (= 0.79 x 10™% in this instance).

Now, using Eqs. (Al1.3 - Al.5) an example is given cf the calcu-
lation of ‘the lowest vibrational frequency, that is, where the
axial mode number, N =ll, and the radial mode number, N = 2.

The wavelength factor for M = 1 is:

Ae = 0.1595 (1+0.1855)

I

0.1891
The K coefficients, leading to the value of A , and
ultimately to the frequency,j: » are, for N = 2:
K, = (0.325 x 1.281 x 10”3) + (0.355 x 0.79 x 1674 |
[(4.0358)% - 4.59 - 128 +16]
(4.16 x 10°%) + (4.12 x 1073) = 4.538 x 1077

0.355(4.0358)% + (1.271 x 3.58 x 1072) + (0.355 x 4)
+1.355 x 0.75 x 1074{4.0358)

Ki

= 5.76 + 0,0455 + 1.420 + 0.0070 = 7.232
Ky, =1+ 1.355(4.0358) = 6.46
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Then /A = 0.628 x 10~

ond £ = —leJQS; = 67.8 cycles/second.

' 3.7
The remaining frequencies have been caiculated acccraing to the
curves of WQS given in Arnold and Warburton's paper (4), a
slightlv less accurate but considerably more ccnvenient technique.
The results are plotted in Fig. (AI.1) for the lower vibrational

frequencies as are tabulated on the following page.
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m n A /2 .
Axial Radial Wavelength Frequency Frequency==lQ§;5;g—
Mode Mode Factor Factor c/s

1 2 .1891 .025 67.8

3 .070 189
4 .129 349
5 - 573
2 2 .350 .036 87.5
3 0790 189
4 131 355
3 2 .508 .055 149
3 .075 203
4 .133 360
4 2 .667 .087 235
3 .087 235
4 : .14 379
5 2 .8271 .130 351
3 .102 - 276

4 .155 415
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APPENDIX IT

STRESS ANALYSIS

Hoop Stresses

The derivation of the hoop stress and dynemic stress function,
summarized in the main text in Egs. (1) to (4), is given below
in full for the example of the sawtooth input waveshape.

With reference to the diagram showing the forces and stresses
on a small segment of a cylinder, Fig. 2, a force balance in the
radial direction will give the radial acceleration, i.e.Zfﬁi==nﬁ*

and leads to the equation of motion:

—Zog(emdée-)hdz, +p(rdedz) = /ohr\dedrg;% o (A2.1

where m is the mass of the element,/o is its density, roits
radial acceleration, N its thickness, =znd dO® anddz its circum-
ferential and sxial lengths respectively. CUg is the hoop stress
acting on the element due to the radially acting Internal pressure,
P , which is time variant and will be represented by p(t) here
onward. The radial acceleration is the second derivative of the
radial displacement, U , which is given by

U= (Pﬁ-Y;2///(3
where I, is the initial mecan radius of the cylinder, and ™ the

radius at a subsequent time, t .
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For small displacements, Eq. (A2.1) can be simplified by
writing sin de/a and d% , then:

/t —~ 6‘/&’* = dfx? At? (2.2)

The hoop stress, 55 may be replaced by an expression for
the displacement, U , provided that the assumptions are made
that the cylinder is long and that each element is in a state of
plane stress, i.e. 6g = Eee = Eu/r.; , where 69 is the hoop
strain, and E the modulus cf elasticity. Equation (A2.2) thken

becomes:

p(t)/h ‘“E'V/r“-vt =/o(,1 (A2.3)

For small displacements, we can assume that URO ,{=\; .,(\""

constant, and /Jm constant, which leads to:

PE)/h -~ Bufe = poid

or (A2.4)

E.//gr")u = P(t)//oﬁ

From the second term in this equation we can defire a

natural hoop frequency , wg as:

\ = / 2 A2.
ONN -I/ é/,c\(‘ (A2.5)

so that Eq. (A2.4) may be written simply as

L+ wyu = p('t)//ah - | (42.6)
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The Laplace transform method was chosen as the most conven-
ient means of solution of this equation of motion for the particular
boundary conditions enccuntered in this application. Thus, the
Laplace transform of Eq. (A2.5) for initial conditions U(B)={}(0)= O

?

is:

(&%t ¢3) G(2) = —7%;;- B(s)

Solving for U we have:

1) = 4 (B2 ) (2.7

S5+ W

where (L (9)= Z[ UL({:)J = /e-St w (t) dt

and P(%) = Z [ P(t\}]

It now only remains to find -{5(6) to obtain the full solution.
Each of the various mathematical approximations for blast loads,
as shown in Fig. 3, will yield a different solution. Here, the
solution for the sawtooth function (B) will be demonstrated. The
other soiutions are given later.

The pressure function, P(t) , for the sawtooth waveshape,

(B), is given. by:

pt)=| pm(l=t/r) o< t4T
o £

where T is the total time of duration of the pressure pulse,

(A2.8)

and Pm the maximum pressure.

_—_ v



. AN et e o T . -

aAl3

This can be transformed into a single expression by use of

a unit step function H('t:r) such that

o Fer 1 <T
H(t-T) -{ ol

then the loading function becomes:
P(t) = Pm H(t"T)I;rL (A2.9)

-P-(‘é) ‘s then obtained by finding the Laplace transform of P(t) ,

thus:

—st
P =L [p] - 22— fp (45

S

Relating t'L(s) to ?5(6) by means of Eq. (A2.7) we have:

o) = _,om [%_ 1]"( L- 57'-% ) 6"}-50?5]

—st
= -EM [ 1’ . 1_ . e
Ph L o(wWi+e?) To (Lt c)) " T2 (Wi + 2°)

The solution in terms of the displacement, U\(t) , 1s obtained

by taking the inverse transform of the above expression, thus:

w(t) = )gg{-ig (1_ cossl) — —L,_(wgt — oin gt
[&o (t —"') — SN LW, U?'T)J H (t -D}

bl
T
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Removing the part of the solution pertaining to the arti-
ficially introduced step function,i4(t-7T) ,» we obtain finally
the following solution for the displacement:

u(t) = -F—”ﬁ /1 T/-l--c%wgf-g-@—"‘l@at—\ O<t T
s T ’/
9 (\
(AZ.10)

( - Cof"”gr bma)‘t [1— o\r;gr)e'\' cos st

wa "1
P Lt

Equation (A2.10) consists, in each of its two parts, of a
constant terna rapresenting the hoop displacement of a thin cylinder
under constant static internal pressure, PWL ,» and a trigonometric
time function representing the correction to the static pressure
formula required for a dynami: pressure as specified in Eq. (A2.3).
The time function will be here onward called the dynamic loading
function. Thus, for the case¢ of the sawtooth input function,

the dynamic loading function, ¢ , is:

%, [1_;%_w5w9+ ainwet "l fr 0cteT

a)e—r
(A2.11)
i—co¢ou€T> i fﬂnégej‘ » -
[( T SN Wyl <d T >cc>5co‘9 for t 5T

Equation (A2.10) for displacement can now be reauced Lo:

cue'oh 9159 (A2.12)




Rewriting this in terms of strain, we have:

€, = - 4 (A2.13)

which, in terms of stresses, yields:
~ m-‘." /
o, = -E_—-h A (A2.14)

Thus in each case, the required parameter (displacement,
stress, or strain) can be cbtained by simply multiplying the
expression for a thin cylinder under constant static internal

pressure by the dynamic time function,;ﬁ.

Axial Stresses

In the main text, the equatica of motion in the axial direction
was obtained in the form of Eq. (6) as follows:

f¥%%; *"&t U =,JZJD%5;E§§1— (A2.15)
where W, is the axial displacement of the cylinder's end flange,
which is of mass and is acted upon by a pressure F{FKt) where
is the ratio of the reflected to the incident pressures. The |
cylinder, of mean radius ¥ has an axial spring constant K .
* °  The form of Eq. (A2.15) can be seen to be similar to the
equation for hoop motion (A2.6), especially if an axial natural
frequenrcy, W, , be defined such that

Wr=V/m
Thus Eq. (A2.15) becomes:

(A2.16)
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By direct comparison, the solution for the axial dynamic

loading function,féb , exactly comparable to;% , is obtained:

, = “1 «t/T—coeth+ 6%?‘?‘t ‘J\ 0cteT

(A2.17)
[(ii—‘u:—‘;-%r&-‘f)slr AR +\1 M—)cos w.‘g taT
L e

The complete solution for displacement, stress, and strain
can then be written (again the coefficients of ¢ represent the

values of the parameters corresponding to a statically loaded thin

cylinder).
displacement:
W, = R _a_ O ¢1_ (A2.18,
W,
strain:

€, = %%EL B | (42.19)

and stress:

: _%;m'; Q{.L .‘ (A2.20)

-
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Solucions for Alternate Dynaniic Loadings

The other dynamic loading forms shown in Fig. 3 will give
different sclutions fer the dynamic loading functious ¢9 and
¢z but will not affect the other parts of the solution, i.e.
the parameters for statically loaded thin cylinders, Eqs. (A2.12-14)
and (42.18-20).

Below are listed the solutions for the dynamic time functions,
/d(t) , for each of the input waveshapes shown in Fig. 3:
(A) Square wave input

waveshape; P(‘t/) = 1 Pm §°T' o0 <t ¢T
O o 12T

solution, #(t) = J(|-coowtl) for 0<t<T
Cow (——‘*—;’E—) sin a)(t—‘/r/a) t 5T (a2.21)

(B) Sawtooth input

waveshape, P(t> Z PM({"t/.L\ Sor Ot teT

solution, ¢(t) § t/T C06a.) t-l-MJ O &4t

( [ 1 coswmi' S, (2.22)

- (i~%@06 oow:p_] ta7



Al8

(¢) Zxponential decay

waveshape: P (t)

( )Smoot coswt+& 7T
"+ (LT)

]

solution: 90’(t)

(A2.23)

where Tf—"' 1/@

(D) Exponential multiplied by time -
—Q.
waveshape: P/-t) == pmaete

solution: |_est (14 s ._t/T
- [[Hi/sr)ﬁ}{[ ol ] ye

- -—~-— cos i - ( LZS{] )em w‘tj (A2.24)

where T = 1/

(E) ]_inear vise with exponential decay

wav eshape: P('t)= (PM t/:l;l jor 01 €t
—a(t-t°

solut on:‘\ ' -t/T (!'/(“)Ty _an (A)-tl o)
tuston: G(8) - Yot (u(%n)z wt )

) \
+(_1@__ _'__i——coew'tg )em ot (A2.29)

{+{[ YT w?
for 't)'t, , and where tls'[-t' - and T = f/a,




Calcutation of Dynamic Time Functions

The expressions for the dynamic time functions, Egs. (A2.21)
to (A2.25) give ¢(t)em a function of three variables, w , 1 ,
end | . In every case, () can be combined with the time variables
so that in effect ¢(t) is a function only of the two composite
variables (b)'t? and ((,u—p

Values of ¢ for various of the sclutions have been plotted
as functions of these composite variables, using an electroric
computer to handle the calculations. In each case ¢(f) has been

pletted to a base of (wt) for several values of (LOT), for -

1.0€ ¢ €100 radians, the range of (oot) plotted being
0& wt £32.0 radianc

The computer program is very similar for each of the dynemic
time functions, and is explained, in the following section. An
example program is given in Table A2.3 for the sawtooth input,
and alterations required for the other input functions are given
in Table A2.4.

The computer output, in the form of graph plots is presented

as follows:

Waveshape Outpuit Plot

(A) Fig. AIIL.2

(B) Fig. AII.1

. (¢ Fig. AIIL.3
(D) Fig. AIT.4

(E)--nnt computed. The additioaal varieble,

1 , rendered this function unsuitable for convenient prasentation.
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Computer Frogram for Stress Calculations

A orogram in FOKRTRAN computer language was constructed for
running the stress calculations on an IBM 7090 computer feeding
a CAL-CO¥P automatic graph plotter. The computer calculated the
values of ¢(‘t,) at time intervals AT for a variety of values
of T . The output was stored on magnetic tape which taen became
the input for the graph plotter, resulting eventually in the set
of automatically plotted curves shown in Figs. (AII.1-4).

With reference to Tables A2.1, A2.2 and A2.3, the explana-
tions and translation of the FORTRAN language variables, the
computer program fiow chart, and the computer program respectively,
the step by step computation process can be followed through.

For given boundary conditions (/&5lxt,1mﬁ¥18<7— ) the steps
involved are:

(i) selection of a value of | .

(ii) selection of a value of T

(111} calculation of wl and reduction of this to an angle

between O and & radians.

(iv) calculation of wl and simi]:ar reduction to O<w <21

(v) selection of the relevant part of the ¢(t)function for

the particular value of T involved.

(vi) computation of (1)

(vii) plottiﬁg of the value of ¢(t) on the cutput curve.

(viii) selection of the next value of T or T .

(ix) repetition for the new value oﬁ't or | until the entire

range has been covered.
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Tables AZ.1, A2.2, and A2.3 are for the sawtooth input function
(B), resulting ia output curve AII.1. The programs for the other
inputs ~re exactly similar, using the alterations to the program

card-deck as given in Table A2.4.

r-
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APPENDIY IIIX

SEMICONDUCTOR STRAIN GAUGES
In this appendik are given details of the properties and
characteristics of semiconductor strain gauges, their installa-
tion, calibration, and their use. The particular gauvges used in
the present work were Baldwin-Lima-Hamilton, type SPB2-18-12,
althcugh the information which follows is applicable, in general,

to all semiconductor gauges.

Backeround

The principle behind conventional resistance wire-grid strain
gauges can be traced back to the time of Lord Kelvin who demon-
strated the manner in which certain metallic conductors exhibited
a change in electrical resistance when subject to mechanical strain.
Such gauges are now in a highly developed state and are the basis
of most experimental stress anelysis. In recent years, however,

a new strain sensitive device has been developed, very similar in
eve.y respect to the old wire-grid gauges, but exhibiting resistance
changes in the order of 60 times those obtaiuned from the wire-

grid types. This device is the semiconductor strain gauge, superior
to its older couterpart in its increased sensiti.ity, lack of
hysteresis effects, and lack of zerc shifting, and inferior in

only one major aspect - its non-linear response to strain. The

non-linear response hindered the development and popularity of
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this new gauge for many years; in fact it was only in 1960 that
a serious attempt was made to explain the mechanism of operation
of the gauges from a knowledge of their crystallographic character-
istics (10). A reliable theory is now established, and with the
aid of an electronic computer to handle the -ather lengthy
calibration calculations, there is no reason why semiconductor
gauges should be regarded as any more problematic than wire-grid
gauges.

Theory

The "many-valley" theory of semiconductors, as is presented
in the appendix to KRef. 10, shows that for a semiconductor with
its maximum sensitivity along the 111 axis; the resistance-strain

relation can be expressed in the form:

[%Q] = €+ Cu€ +C E 4. .. (83.1)
0.
N

where &€ is the strain level, EF%;}1_ is the characteristic gauge
resistance at temperature 1P (to be explained later), and AR is
the resistance change in straining the gauge from € =QO 0 € = €& .
The constants C,, Ca.: C-_:, , etc., are basic properties of the
semiconductor material, depending on its material, its crystallo-
graphic orientation and the level of doping.

A word of explanation on the crystallographic terms would
perhaps be appropriate here: Introduction of a foreign element
into the semiconductor crystal is known as "doping". This is a
common practice'in manufacture of semiconductor strain gauges, as
it has an advantageous effect on strain-resistance linearity and

on temperature stability. In the case of silicon gauges, doping
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levels up to lO20 atoms of boron per cc have been advantageously
used (10}.

Selection of the best crvstal zxis along which to cut semi-
conductor gauges is indicated by the meny valley theory as being
the 111 axis. For a crystal of silicon, which grows in the form
of a long hexagonal bar, tnis axis is the longitudinal center line.

A semiconductor material's resistance will be a function of
the following parametefs: T , temperature; £ , the strain level;
O , the resistivity; and[}E;Lr the basic gauge resistance at | .
For a semiconductor strain gauge of given resistivity, cut on a
given axis, and of a given shape, then, the resistance will be a

function only of | , & , and EFi;]T

AR (e e e 7 .
3’ {jfi:‘ "';) (A3,2)

- - ——z 5 )
(Ra] S O

Utilizing a reference temperature of 298°K, (A3.2) can be

non-dimensionalized with regard to temperatures, and an equality

established:
AR '(29&) 1208 Ee (298 <
[‘QJT = C T €Cor E+C3\ SRk (A3.3)

The prime mark used on any constants here onward indicates that
values are referred to the 298°K reference temperature.

In practice it transpires that only the first two terms in
Eq. (A3.3) are recessary for quite accurate analysis. In Ref. 11

|
it is shown that the effect of (35 at the high strain level of
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1¢,000 pm'/m" is less than 1%, and can justifiably be neglected, i.e.
A I
C, = Cy=Cq 5 ete. =0

This leaves us with the equation of a parabola: (see Fig. AIII.1)

o~
-éfir - ¢ 2_?_&-)6 - C‘a(éfaré—)e” (A3.4a)

To bring semiconductor strain gauge theory into line with
theory for conventional wire gauges, the concept of a '"gauge factor"
G.F., is introduced. For wire gauges.

AR _ GE x g (A3.4D)
R9
is the governing equation for operation, R@ and G.F. both being
constants for a particular gauge.

The non-linear response to strain and the fact that the basic
gauge resistance,‘2° , 1s a function of temperature makes a simple
relation of this t;pe meaningless in the case of semiconductor
gauges. However, use of a similar constant (G.F.)' is useful
in formulating the more complex expressions for these gauges.

(G.F.)' is defined as the gauge factor determined at reference

temperature 298°K and at zero strain, i.e.;

AR L1 .
GEl = 8 « L. € >0 (A3.5)
S

From Eq. (A3.3), it may be seen that C# =(G.F.)'. Thus,

the equation describing the behavior of semiconductor strain
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gauges in its most convenient fcrm is:

[FZ 3. = [6.E] (2_?.55 )e +C <e_|‘ib ) e” (83.6)

(A3.5) is the basic expression governing the character-
istics of any semiconductor strain gauge, where AR, is the output
for a change in strain € . It must be understood that € in this
equation is the total strain acting on the bar of silicon which
is the gauge's sensing slement. Three separate-and distinct
strains act on the silicon bar at any given time:

(i) 638 - a large compressive strain due to bonding.

(11)€1 - a tensile or compressive strain due to differen-
tial temperature expansion or ccntraction between
the gauge element and the specimen.

(1i1) € - the strain in the specimen, the magnitude of which
we are attempting to determine.

The total strain on the gauge element, € , is then:

The calculations involved in obtaining calibration curves for
the particular gauges used in these tests from formulae (A3.6 and 7
will be discussed later. Firsc it will be beneficial to examine
the effects of temperature and bonding on gauges, and to consider
some practical aspects ¢f the use of semiconductor gauges - bonding

techniques, circuitry, calibration, etc.
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Gauge bonding

It is not possible to bond a semiconductor strain gauge to
any specimen without leaving a residual strain on the gauge element
{the silicon rod in this case). The causes of chis are twofold.
Firstly, there is always a large compressive strain on the silicon
rod from the backing material on to which it is mounted by the
manufacturers. Additionally, almost any process for attaching
the gauge to the specimen involves heating to cure the bonding
compound. Differentia. temperature expansion between the silicon
and the specimen material will result in a permanent strain on
the silicon rod when cool.

Clearly? there is no time when the rod is unstressed except
before the silicon rod is mounted on to its backing. As it is
essential to determine the basic gauge constants under the condi-
tion of zero stress, these measurements must be maw> by the
manufacturer at this time. Measurement is made of the silicon
rod's resistance and resistivity at the reference temperature of
298°K. From the resistivity measurerent comes the values for the
constants (G ¥.)' and C; from Eq. (As.6). In Fig., AIII.2 are
reproduced tne manufacturer's curves used to determine these
constants. The value of resistance measured under these condi-
tions is that of BQ;}ﬁm , the unstressed gauge resistance at
298°K, also required in Eq. (A3.6).

After the calibration measurements, the silicon rod is
bonded by the manufacturer into a thin strip of bakelite to act

as backing support and aid in mounting the gauge on to the specimen
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This process results in a compressive strain being permanently
applied to the silicon rod by the bakelite surround.

It now remains only for the user to mount the backed gauge
on to the specimen in which strains are tc be measured. The
practical aspects of this process will be described later; but
it should here be noted that the Epoxy cement used in this process
requires that heat and pressure be applied while curing. The heat
puts a furcher compressive strain on the gauge due tc differential
expansion between specimen and silicon, thus, by the time the
gauge is bonded and ready for use, it is in a state of compression
of considerable, but unknown, magnitude.

Equations (A3.6) and (A3.7) show how the magnitude of the
bonding strain may be determined:

DZo] = [&.F] (298>€ +c (Z.%&)e e

where

I{ the resistance of the gauge be determined with no strain
on the specimen and at a temperature of 298°K, then Eq. (A3.7)
becomes

6'65

and, if Qbis the geuge resistance measured under these conditions,

Re—[Relses _ GEle.+c.c? (A3.38)
[RJZ crandCE S
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Thus, this one measurement completes the calibration requirements
of the gauge, leading as it does, directly to evaluation of 65 >
the bonding strain.

Temperature effects

Temperature variation affects semiconductor strain gauges in
tvo ways; (1) in affecting the value of the "unstressed gauge
resistance",[ﬁi;Lr , and (ii) in changing the strain due to differ-
ential expansion between gauge and specimen, eT .

The differential expansion effect is easily dealt witbh, pro-
vided that the expansion coefficients of silicon and of the test
specimen are accurately known. If o<z 1is the temperature expan-
sion coefficient of silicon, <5 1is the temperature expansion
coefficient of the specimen, then-

€= (T~ 298)(0cg—o5g)
(T-298)cc

(A3.9)

]

Whren working with static scrains, this expansion effect is undesirabl

as the magnitude of EET often will exceed Gé’, the strain being
measured, and thus reduce the accuracy orf measurement unless €5T
is known very precisely. Compensation techniques, using another
gauge as "dummy" are common in wire-grid strain gauge practice,
but less peoular with semiconductor gauges because of:
a) the difficulty of matching gauges to give the same
output for a given temperature change. For this it is
necessary for the honding strains to be nearly identical

for the two gauges, aud practical experience shows that



A30

this is far from a simple matter.

b) the high cost of semiconductor gauges prevent too liberal

use of them merely as "dummy" gauges.

The problem is not serious when measuring only dynamic
strains, however. Knowledge cfi the gauge temperature to only
reasonable accuracy was necessary to find the zerc-point on the
gauge characteristic from which measurements could be based.

In practice, therefore, a thermocouple was installed with each
gauge at the time of bouding, this giving a sufficiently accurate
temperature measurement.

The effect of temperature on the "unstressed gauge resistance”
[R;]T is a basic property of the silicon material and could thus
be determined from a temperature coefficient curve supplied by
the manufacturer. This curve is reproduced in Fig. AIII.3.

With this curve and knowledge of the reference resisfance
£Eo]238 ’EE‘JT can be determined in the range O to 400°F. Here
we have another drawback in the use'of these gauges. At the
present time there are no data available to find the variation
of’BEQlTin.the sub~zero temperature range.. The suppliers of the
gauges, Baldwin-Lima-Hamiliton Corporation, are at present collect;
ing data in this range, but meenwhile it is only possible to
estimate what will happen. Information received from the Semi-
conductor Division of BLH indirates that the temperature
coefficient curve is parabolic, reflecting the same value at
-200°F as at +75°F. Hence, the performance of the gauges at

low temperatures can be estimated, but no reliable low
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temperature measurements can be made until reliable calibration

data is available.

Pictorial representation of semiconductor strain gauge

characteristics

The effects of bonding and of temperature variations will
be clarified by reference to Fig. AITI.4, a plot—not to scale— of
typical gauge characteristic curves. The figure is an enlargement
of the negative section of the parabola shown in Fig. AIII.1, the
several curves indicating different temperatures. The Listory
of the strain gauge, as covered in the previous pages, can be
mapped out on Fig. AIII.4 as follows:

The plain bar of silicon before mounting and backing is
represented by the origin; zero strain acts on the bar. The
manufacturer mounts the bcr on to bakelite, and we move down the
298°K characteristic toward B . The gauge user mounts the gauge
on to his test spec1men, and, on recovering the temperature of
298°K, reaches the point B, with a compressive stra’n of B
set into the gauge.

Now, if measurements are made at some other temperature, T ,
we move along the expansion characteristic (broken line) to Z
before any strain is applied to the specimen. If a tensile
strain, éb , now be applied to the specimen, the gauge indicates
a strain of €p+€ +(T-298)c. Now, at the "zero paint” Z ,

at scme temperature, with the strain on the specimen zero, it
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follows from Eq. (A3.6) that the sensitivity is:

ARz ] (28 7006 +c! (22 (e sTr-208ex) (.10
[Qo]T—[G.EJ( T)(QB{T 298_;] > +CZ(T)(65+[‘ 2983 ) (A3.10)

Then, on applying strain €., to the specimen the sensitivity

becomes (at point c¢):

_[%% - [G,F]‘(_@.?.—?ﬂ(egféa [T-298)=)

| oop \E/ N\ (a3.11)
+ o (BE) (€e t €5 + [T-2a8])

The gauge output die to a change in stress of E%swill be given Lwv
the difference between (A3.10) ard (A3.11). Expanding and combining

the two equations:

(A&-—A&) _ [GIF]'(Z__?_L%@

e,
+ c:z’ (_Z_TQ__&L)Z [e:’ + 2€, (é 4L T-298] o‘)]

The output change in,gauge resistance AR, for strain 65 is

given by:
AR = ARc- AR,

= [R.]: _?25'63 [[G,E]' T+ 29&(:;(66+2e6+2[r-2325]o9] (43.12)




Practical Aspects

So far, only purely theoretical and zeneral considerations

have been presented on Loth the stress analysis and semiconductor

strain -gauge aspects of this work. It is now necessary to consider
; practical details and theoretical predictions applied to this
specific project. Bonding procedure for the strain gauges will

; first be briefly considered, followed by some practical schemes

for strain gauge circuitry, then details of the techniques used to
: calibrate the gauges and prepare them for use.

Gauge bonding

As was indicated at the beginning of the previous section,

A TN e e (g gy

six strain gauges were mounted on the detonation tube — a radial
and an axial geauge at each of three stationms.
Scrupulous preparation of the surface was carried out at these
points, consisting of:
(a) surface grinding with a rotary belt-grinder until the
surface was smooth and free from all irregularities.
(b) wire-brushing to a high surface finish so that the
§ surface may be easily in. pected for any imperfections.
(c) controlled surface scoring with No. 200 emery grit.
(d) scrubbing with acetone to remove all dirt and grease.
Guide lines were then scribed on to the vessel's surface
O ensure accur;te alignment of each gauge.

The strain gauge and its associated thermocouple were pre-

pared by lightly washing in acetone.

DI e e il S SR L S Y e
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A small quantity of Epoxy adhesive (EPY-400, manufactured
by Baldwin-Lima Hamilton Corporation) was smeared on the vessel
surface and the strain gauge and thermocouple pnsitioned, ensuring
that no air bubbles were :rapped under the gauge.

The strain gauge and thermocouple were covered with a (¢.001l"
film of Teflon - a plastic material to which Epoxy adhesives will
not adhere. Over this was placed an 1/8" thick Nevprene rubber
pressure pad and a small.flat copper plate. Bearing down on this
assembly, under spring pressure, was an adapted heavy soldering iror
to apply heat and pressure for curing the Epoxy adhesive. The
soldering iron was connected to a temperature controller which,
using the thermocouple as sensing element, kept the supply <f heat
to the gauge such that its temperature was constant ac 250°F, &n
overnight cure at this temperature ensured a satisfactory bond.
Fig. AIII.5 shows diagrammatically the bonding setup described
above.

After curing, the assembly was stripped down to the gauge,
excess adhesive chipped away with a small chissl, and the extension
leads to the strain gauge carefully soldered in place. The leads
were insulated and taped into place. The whole assembly was then
given several thick coats of Glyptal (a synthetic epoxy rubber
insulating compound made by the General Electric Company) to
ensure good electrical insulation and moisture proofing. Over
this was fitted a cover plate of 0.005" thick copper film for
electrical screening. The 1aboratdry in which these tests were

conducted is in the close proximity of a local radio transmitter
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so that unscreened leads easily picked up a high level noise
signal at a frequency of abcut 1 Mc/s. The copper film adequately
screened off this interferaznce.

A photograph of the gauge installation at station 7 taken
just prior to application of the Glyptal is shown in Fig. AIIl.6.

Circuitry

The more usual type of strain gauges, that is, for example,
those using a resistive wire grid as their sensing element, may
be used convenier.tly with bridge circuitry such as the Wheatstone
bridge. Their ~change in gauge resistance under strain is very
small compared with the over-all resistance of the gauge. - With
semiconducto gauges, however, the change in gauge resistance is
so large thrat the inherent non-linearity of Wheatstone bridge type
circuits wmust be considered.

In the course of planning the circuitry for the semiconductor
gauges, the possibility of utilizing some Wheatstcne bridge cir-
cuits that had been employed previously with wire grid strain
gauges was investigated.- The pridges essentially consisted of
the components shown in Fig. AIII.7.

For a resistance change AR in the strain gauge, the output,
z&Eio , 1s given by:

AE. = E; (120+4R  _ 120 ) '
Ei (IZO+AR+257 2O +237 (3.13)

and the sensitivity is:

output = AE, = 237 AR
input El 357(557+AE)
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The plot of this. shown in Fig. AIIT.3, indicates that at
LR =208 the uon-linearity of the bridge output is as much as
5,3%. Such a value of AR would be produced, at room temperatures,
by a strain of approximately 1200/;1"/", which is certainly within
the possible strain range for this application.

Correction of the bridge non-linearity is possible but incon-
venient, and use of this technique was rejected in favor of constant
current circuitry. In this case the voltage across the strain gauge
1s directly monitored, the supply current being kept as near constar
as feasible. Constant current circuitry has several other advantage
which make it desirable in this application. The output, for
example, is up to double that for an equal arm bridge circuit.

Noise level is very low, as the ground line is common fur supply,
gauge, and display equipment. 7o achieve near constant-current
conditions, the simple technique of using a large ballast resistor
across a high supply voltage was used, the magnitude of the voltage
and ballast resistance being chosen to give a supply of approxi-
mately 20 milliamperes within 1/2% for a 120-2. gauge operating
between + IOOO/pL n/v, The circuit shown in Fig. AIII.9, operates

under the following conditions:

voltage across strain gauge = 300 x 120 = 2,39 volts

15,120

current through strain gauge = 2.39/120 = 0.0199 amp

power dissipated by strain gauge = 0.0475 watts
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The cfficiency of the circuit in gemerating constant current, bc is:

bc - Po _ _15,000 99.2% (A3.14)
Ri+R., 15,120

where QL. = resistance of ballast resistor = 15,000 ohms, and
RSGz resistance o% strain gauge = 120 ohms.
Hence, for a change of resistance AR in the strain gauge,

the circuit nou-linearity, g , 1s:

<-%;&@(;>(i_@ﬂ> (A3.15)
L (AR (1- ) |

For example, when 65 = 1000 microinches/inch, the resistance

change AR would be approximately 17, for a 12052 gauge at

room temperature. Thus

§ - (17/120)(0.008) - 0.00113
1 + (17/120)(0.008)

or 0 113% non-linearity.
The circuit sensitivit,, 5 , 1s defined as the voltage out-
put for an input of 1 microinch/inch strain input:

q . Lé’ _ \/se'élf?-'-‘?c(i—é) (A3.16)
56 ¢« &

where VﬁG is the applied voltage across the strain gauge. Substi-

tuting the values found above:

5 ~ 2.39 x 0.015*% x 0.992 x 0.999
120 x 1

= 296 x 10°° volts//bL m/n
*This figure for strain sensitivity is only approximate since the
value for AR can only be rou%hly estimated at this stage. The exact
value will, of course, be di

ferent for each strain gauge encountered
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A strain of 100//A "/m" could thus be expected to produce a
voltage output of approximately 0.03 volts. This would be within
the reasonable sensitivity range of the oscilloscopes used on this
project, their maxinsm amplifier sensitivity being 0.02 volts/cm.

The constant-current circuitry thus being regarded as satis-
factory, a strain converter was constructed having six such cir-
cuits in parallel operation. Fig. AIII.10 gives the complete
circuit diagram for the strain converter. The six circuits are
only interlinked in that they share the same power supply - the
large ballast resistors prevent any one circuit from affecting the
others. Inciuded in the same unit was a conventional Wheatstone
bridge circuit specially constructed for measuring resistances in
the order of 12052 . This facility is necessary for initial cali-
bration of the gauges. The external appearance of the strain
converter unit is shown in Fig. AIII.1ll1, and the complete experi-
mental setup — strain converter, power supply, oscillecrcope is
shown in Fig. AIII.12.

Calibration

It will be recalled that it is necessary for the manufacturer
of semiconductor strain gauges to partially calibrate the gauges
at an early stage in the manufacturing process. The gauges as
supplied, then, are delivered complete uith the values of the three
gauge constants [R‘azas , (G.F.)', and C,', determined before the
silicon rod was mounted on its bakelite backing. Complete details

of the strain gauges as supplied are given in Fig. AIII.13.
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The constants (G.F.)' and C,' are inserted into Eq. A3.12
as they stand, but from the given value of (R°)298 it is necessary
to construct a curve of (R°)T over the required temperature range,
using the temperature coefficient curve (Fig. AIII.3). The result-
ing curve of (R,)[ versus temperature is given in Fig. AIII.14,
and it will be noticed that this is given for a wider range of
temperatures than for which Fig. AIII.3 supplies data. Data for
the temperature range 300 to 400°K is accurately known from the
B-L-H curve supplied with the strain gauges, and for the range 150
to 300°K can be fairly well estimated using the parabolic assumption
discussed earlier. For the remaining ranges 20 to 150°K and 400
to 46C°K data can be estimated by extrapolaticn. It was considered
more advantageous now to present insecure data with a wid: estimated
error band than to give no results for temperatures below 300°K.

The error bands are marked on Fig. AIII.14 and shown in a clearer
format in Fig. AIII.15.

One further calibration constant is required before the per-
formance of the gauges can be completely predicted - measurement
of the bonding strain, €p , for each individual gauge-

This constant is found by accurately measuring the resistance
of each gauge after installation is completed at a temperature of
precisely 298°K (77°F). It was found that the resistance at 298°K
could be most accurately found by determining the gauge's resistance
over a small range of temperatures around 298° and pickiqg off the
precise value from the curves of R versus T obtsined. The curves

for the four gauges at stations 7 and 9 are given in Fig. AIII.l6.
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Substitution of the resistance values in Eq. {A3.8) led immediately

to the following values for the bonding strains:

Station 7: Gauge XX (axial) EB:: -899 L m/"
/
Gauge YY (hoop) € = <744 g/
Station 9: Gauge AA (axial) €, = -264.5 e "/"

Gauge BR (hoop) €p, = "1347.5 @i

Now, together with che relevant properties of the material of
the test vessel that are given in Table AIII.1, all the constants
required for calibration are known.

Substituting into Eq. (A3.12Z) we have:

Output = AR = [R"]";F%'es {32’27!'

(A3.17)

+(298x5700)fe, + 2€ ,+2[T-298(%lo2. 8115

The most conveunient form in which to use this calibration
equation was found to be in tables :7 :cutput resistance, Z&FL s
versus strain level, 65', for varicus temperarures and for eact
value of bonding strain éﬁb , This quite considerable calculation
being ideally suited to sutomatic computation, ard zn IBM 7090
electronic computer was utilized.

Computer program for strain gauge output calc -:ations

With reference to Tables AIIl1.2 - 4, the 1L... J>f FCRTRAN
symbols, computer flow chart, and computer p~.: .an respectively,
the various stemps composing the program ca: pe followed through:

(a) Data input. Values of the bondiny strains, estimated

errors, and values of (R°)T (and errors) over the
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A4l

temperature vange required are fed into the cowputer

on punched cards. Table AIIL.5 shows how each data

card was made up, and Table AIII.6 gives an example

of the data input for the four gauges XX, YY, AA, and BB.

(b) The first "do loop" assimilates the data input, prepares
the output printer for operation, then selects the first
gauge for calculation.

(c) The second "do loop" performs the calcuiation for succes-
sive values of temperature,'r', calcvlating for‘each.»
value the gauge output and estimated error over the
strain range -1500 to +1500 4. "/" at intervals of

. 100 /™. (Error estimation is considered in the
following section.) |

(d) Completion of the second do loop operation returns the.f
computer to the first do loop where tne next strain
gauge is considered and the whole calculation rzpeated.

(e) When both do loops are complete, the computer is stopped
and the output, which is printed out in the form of the

four-column table shown below, collected.

Temperature Strain Level,e;b Output Resistance Erra
” Change, Al in AR,
°K okms ohms

Range 20° to 460° Ran§e -1500 to +1500./"
in 20° intevxvals in 100 4c"/" intervals

- ¥
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Error Analysis

The probable error involved in computation of AR for known
errors ir each of the variables involved is calculated by use
of a "normal error” analysis on Eq. (22,12),

The normal error theory gives

“}-Z(AR 6& (22,18)

where fﬁ~is the total error, fb< is the standard error of
each variabls, and R is a2 function of the | individual variables

involved.

Repeating Eq. (A3.12), then partially differentiating with

respect to each variable in turn:

AR = [Ra: *_Iﬁ_gﬁ* & [[6.E]‘T+zesc;(es+ 2eg+2[T —aaajofj

I\ q S l—r‘
(a) g&] 2_?;5’ Lr GF] T+298C, (€s+2ep+[T —2%]“)]

(b) SAR - ERo]-r"Z 9’3"65
SGFT; T

() %‘é‘; - 5‘33"'1\2.95‘% e +2¢,+2[T-292)c
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(d) —%Aéfi— = [R;JT‘-%%‘&‘ Cs (ng%"c\aﬂ 2)

() (SéérR = ERJT}Z—”;&'G“’ (-[&.F]-(2980cC2)

The error in AR, can be feund then from Eq. (A3.18):
éAR éAR.; \zZJ é R 2
VZ é[g] 6[Ra] + (é[ F_.] )5@'FJ + 6(:'2 602./

. [LSAR Ve (éAR_)z’ 3
'(é% )5%* ST o

This expression was transferred to the computer program
so that the error could be calculated fcr each value of AR

computed.



TABLE ]

COMPUTER PROGRAM FCR CALCULATION OF THE DYNAMIC
TIME FUNCTION FUR HOOP STRESSES

* NOTE AT PAUSE 1 MOUNT REEL 893 WRITEASLE ON BY
# NOTE AT PAUSF 2 DISMOUNT AND SAVE B5 FOR PRINTING CN
1 CAL'COM PLOTTFR

¥ TAPE B5, REEL 893, WRITE

* LIST

* LABEL

* FORTRAN

C DYNAMIC STRESS FUNCTION FOR HOUOP STRESSES

DIMENSION XX(30)sCX(40)sC(30)
CALL PAUSE(6HPAUSEL)

"REWIND 6

] FORMAT (12A6)

2 FORMAT (F8e3)
OMEGA = 16316

ATIM = 0402
RTIM = 240
12 TAX = =1e0

CALL GRAPH(114005845091679)
CALL FRAMF(NG19GUe0)
CALL XLN(1e505%e5MN93e590e4)
CALL YLN(54573125791e579="4620)
READ2 sZ
DO 22 1 = 14
READ 2+XX(1)
READ1s(C(J)sJ=1e12)
CALL LTR(Z9343591404()
22 2 = 72 + XX{I)
READZ2 42
DO 23 I = 1,5
READ2 +XX (1)
READ1 s (C(JU)ed=1,412)
CALL LTR(1e0sZsls05C)
23 72 = 2 = XX{1)
" READ 1s (CX(I)el=1912)
CALL LTR(7e79826409191+CX)
READ 1y (CX(I)sI=1412)
CALL LTR(9e¢8743e3541+0+CX)
READ 1s (CX(I)sl=1s12)
CALL LTR(447590e691s09CX)
25 TAX = TAX + 240
GO 10 27.
26 TAX = TAX 4+ 5N
27 CALL CURVI (1919091 9="64375902e3799-365954091)
TIM = O,
28 TIM = TIM + ATIM
R = OMEGA#*TIM
S = OMEGA#TAX
35 IF(R=042832)45945946



RS ERTRE,

St o 0% L

45 IF{S=6e2832155955+47
46 R = R - 642832
GO TO 35
47 S = S — 602832
GO TO 45
55 IF(TAX=TIM)T75475465
65 TFUN = 14=-TIM/TAX-COS(R)+_IN(R)/ (OMEGA*TAX)
60 TO 121 -
75 TFUN = SIN(RY¥{(]1e0~CUS(S))/(OMEGA®TAX))=COSI(R)
1#(1,0-SIN(S)/IOMEFGA®TAX))
101 CALL PLOTPT(TIM,TFUN)
11C IF(RTIM - TIM31154115,+28
115 IF(1060-TAX)130+130s120
120 IF(5,00-TAX)26¢26925
130 CALL NOPLOT
ENDFILZ 6
" ENCFILE 6
CALL REWUNLI(6)
CALL PAUSE (6HPAUSEZ2)
CALL EXIV
END ,
* DATA
335
2405
(3H0e5
195
(3H1.0
20
{3H1,5
2.0
(3H2.0
545
1.00
(4H 2.0
1,00
{44 1,0
1.00
(4H 0
1.00
{4H=140
1.00
(4H‘2.0
C{23HDYNAMIC STRESS FUNCTION h
(THTIME MS )

(z8HHOOP STRFS5 DVIIAMIC FUNCTION
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TABLE AII.1
Dynamic Time Function Calculation

List of Variables for Computer Program

FORTRAN NAME SYMBOL MEANING

OMEGA I Natural Frequency of Vibration '
TIM T Time

i
TAX T Decay Time
ATIM Increment of Time t
RTIM : Maximum Value of { to be Calculated

I
TFUN ¢ Dynamic Time Function

Grapn Plotting Subroutine: Library Number J6 BC XYP2
Author: P. H. Thrower,
I.O BO MO’
Oakland, California
May. 1963,



—
OMEGA /CALL ™\
ATIM > — \\ GRAPH
_RTIM *
TAX . _
| TAX = TAX + 9.0 - *\\
> TAX = TAX + 90.0
- %
> TIM = TIM + ATIM
(/’—— | R = QMEGA x TIM |
|
S = OMEGA x TAX ‘f]
— ]

46

-

A R=R- 2%

5

ittt

0< [ 35 €0
~—

0« 45 <0
S - 2%
g

I 47 [ —
A ls=s-22 ( TAX - TIM  )—
_,____@ , -— 0< #so

' 65
TFUN = 1 - TIM/TAX-COS(R)+SIN(R)/(OMEGAxTAX)
C . r
TFUN=SIN(R) x ((1-COS(S))/(OMEGA x TAX))
~COS(R) x (1-SIN(S)/(OMEGA x TAX))

|
>0/ 101

J

CALL
_— i \ai, Trn /
£0
>0 15 \ <0 >
100 - TAX
120
10 - TAX | END
NN
o~ >

Table All.2 Computer Flow Chart for Dynamic Time Function
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ABLE Alle3 DYNAMIC TIME FUNCTION

OMPUTER PROGRAM “FOR SAWTOOTH INPUT FUNCTION

* NOTE AT PAUSE 1 MOUNT REEL 893 WRITEABLE ON B5

* NOTE AT PAUSE 2 DISMOUNT AMD SAVE BS5 FOR PRINTING ON

*
*
3
*
C

1
TAPF

22

CALY*COM PLOTTFR

B, REFL 893, WRITE
LIST :
LABEL

FCRTRAN
GENERAL DYNAMIT FUNCTION FOR SAWTOOTH INPUT
DIMENSION XX(30)+CX{40)+C(30)
CALL PAUSE(6HPAUSEL)
REWIND 6
FORMAT (12A6)
FORMAT (F843)

ATIM = Q.4
RTIM = 32,0
TAX = 09

CALL GRAPH(1140098e50s1a00)
CALL FRAMFE((04D90,40}

CALL XLN(1,50399¢5093¢590e75)
CALL. YLN(5e5091e5091e509-0420)
READZ2,2

DO 22 1 = 143

READ 2+XX{1) :
READ1 4 (C(J)sd=1412)

CALL LTR(Z+3e3545140,C)

Z =2 + XXt

. READ2+2Z

DO 23 I = 1,45
RFAD2 9 XX {1}
READ1»{C(J)sJ=1e12)

- CALL LTR(1e092+150+C)

24
25

26
27

28

35
45

46

Z =2 = Xxth
READ 1y (CX(I)9elI=1412)
CALL LTR(Da7926403191sCX)
READ 19 (CX(I)el=1412)
CALL LTR(9e8093435915C0sCX)
READ 1s (CX(I)sI=1412)
CALL LTR{447550e69150sCX)
TAX = TAX + 140 .
GO TO 27

TAX = TAX +6¢0

GO TO 27

TAX = TAX + 9N,.0

CALL CURVF(19130510=6403384N9~345054051)

TIM = 0, ‘
TIM = TIM 4 ATIM
R = TIM

S = TAX
IF(R=662832)55455546
IF(5=0e2832)55455947
R =R = 62832



R RIS

47

55
65

75
101
110
115
120
121
130

*

3495
2450
* (2H10
250
(2H20
250
s {2H30
5¢45
1.00

(4H 2.

1.00

tGH 1.

1. 00
(4H
1,00

(4H=1,

100

(“H-ZO

GO TO 35

S = S$=~642832

GO TO 45
IF(TAX~TIM) 75575565

TFUN = 14~TIM/TAX-COS(R)+SIN(R)/TAX

GO TO 101

TFUN = SIN(R)#({1e=COS(S))/(TAX)~COS(R)Y*(1,-SIN(S)/TAX

CALL PLOTPT(TIMsTFUN)
IF(RTIM = TIMj}1159115928
IF(100e0-TAX)13C»130,120
IF(i0sC=TAX) 269269121

TF(34,0~TAX)26+25924

CALL NDPLOT
ENDFILE 6
ENDFILE 6
CALL REWUNL(6)

. CALL PAUSE(6HPAUSE2)

CALL EXIT
END
DATA

0
0
0
o
0

(23HDYNAMIC STRESS FUNCTION
(THRAD [ANS N
(35HGENERAL DYNAMIC 5TRESS FUNCTION (A)



TABLE Alla.4

PROGRAM DECK ALTERATIONS FOR ALTERNATE
INPUT FUNCTIONS

(B)y SQUARE WAVE INPUT

55 IF(TAX-TIM) 75475465
65 TFUN = 147 - COSI(R)

GO T0O 101
75 TFUN = 260%(SIN(P)*SIN(Q))

(C) EXPONENTIALLY DECAYING INPUT

55 TFUN = (SIN(R)/{OMEGA¥TAX)~CUG(R)+247183%%
T(ATIM/ZTAX) 1/ (1e0+1eN/{OMEGARTAX) ¥%240)

(D) EXPONENTIAL % TIME FUNCTION,

55 TFUN = ({(247183/TAX)/(140+1e0/TAXRH2,0)%%2,0)%
1(267183%% (I TIM/TAX IR (240/TAX+TINR(1eN+1e0/TAXF#2,4,0))
2-2eC0#COS(RY/TAX=SIN(R)*¥({1e0-1eD/TAX¥*%240))
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TABLE AIII.1

Properties of the Test Vessel Material

Type 304 Stainless Steel

Structure:

Density:

Modulus of Elasticity:
Specific Heat:

Thermal Conductivity:

Theriw:l Expansion Coefficient:

Ultimate Tensile Strength:
Yield Strength:

Brinell Harcness:

Austenitic

0.287 1b/cu.in.

29 x 10° psi

0.12 Btu/°F/1b

9.4 Btu/hr/ft?/°F/fL. at 200°F
9.6 41 in/in/°F, 32 to 312°F
9.9/¢(in/in/°F. 32 to 600°7
85,000 psi

35,000 psi

146



TABLE AIII.?2

Variable Names for Computer Program

_—y

Variable Symbol Variable
Description Name
Bonding Strain Ce XBOND
Error in Value of Bonding Strain EXBOND
Unstiessed Gauge Resistancz [R":‘T XZERO
Error in Unstressed Gauge Resistance EXZERO
Number of Strain Gauges MBMAX
Number of Incremental Temperatures MZMAX
Temperature °K T TEMP
Bonding Strain Ep RBOND
Unstressed Gauge Resistance E—QJT RZERO
Strain Due to Thermal Expansion Cr TEXP
Strain Level in Specimen E STRAIN
Sum of Strains on Gauge e SUMSTR
Intermediate Variable COEFF
Output Resistance Change OUTRES
Partial Derivatives of the Output 5AQ/C§ER11 DELZRO
Resistance Change éAQ’ éEGF] DELCCR
AR éAR// 3o DELGFR
with respect to its éAR'/ Q‘a D1LBOND
Constituent Variables ) CSAR/ & DLTEMP
Error in {  Error in [R.); ERZRO
the above 2 n [GEY ERGFR
Constituent " " C;:. ERCCR
Variables " " Cep ERBOND
L ERTEMP
Calculated Error in Output Resistanmce " " AR ERROR

s
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1 OINET med nt EERTRIRAGA. Lode e he P ah e

ELEEN

XBOND

SN\
—-»—/DO}Z -— = — — - - -

XZERC \I = 1, MBMAX R
MAMAX f !
N i
RBOND « XEOND(I) |
L T \
TEMP = O —}u !
T |
EXBOND R 2~ BN !
EXZERO I \¢ = 1, MaMax S T T T T T Ty
MZMAX ' L
r 1 ! i
TEMP = TEMP 4 20 |
] |
s
RZERC = XZERO(J) '
| i
(.‘—— T ’ l
TEXPJ- (TEMP - 298.)*12.96 | | |
STRAIN = ~1600. l l
T
20 o ,
STRAIN = STRAIN 4 100, |
L .
SUMSTR‘ R ‘
T |
)
; |
r L |
. TE) | ; -
q %P _'—_"-‘]b ERROR fneese e 1 I
| STRAIN u
| GUTRES (_ STRAIN - 1400, ) l
| ERROR —

- |
. Cone e
l/\—/ TEMP - 460, CONT INUE

| CoNTINGE L o e e e e

(6]

Tabie AIII.3 Flow Chart for Strain gauge characteristics program,
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TABLZ Alll.4

STRAIN GAUGE CHARACTERISTICS COMPUTER PROGRAM

JOB 1C72s TIME 29 PAGES 60 WAME ROBERT D WING

FORTRAN
LABEL
LIST
SEMICONDUCTOR ST AIN GAUGE CHARACTERISTICS
DIMENSION XBOND(L0)sEXBONE(1I7) s XZERO(3N)$EXZRO(3N)
2 FORMAT(4X9F541910X9FTels1NKsF1%a391NXsF17.5)
3 FORMATI(212)
4 FORMAT(4E1043)
5 FORMAT(EL1(C.3)
131 FORMAT(4Xs5SHTEMP 43 10X 96HSTRAINS 11X 10HRESISTANCE,

112X s5HFRROR)

132 FORMAT(1HI)
READ3 4 MBMAX 4 MZMAX
READ4 s (XBOND (1) I=1sMBMAX)
READ4G4 s (EXBOND{I)s1=19MB-AX)
READS 9 (XZERO (U ) 9 J=1sMZIMAX)
READS s (EXZRO(J) 9 J=194MIMAX)
DC32 1=1,MB8MAX
RBOND = XBOND(I)
PRINT 132
PRINT 131
TEMP=C,
00 321 J=1sMZIMAX
TEMP = TEMP + 20,
RZERC = XZERO(J)

TEXP = (TEMP-298,)#124.56
STRAIN = -1600.
20 STRAIN = STRAIN + 100,

SUMSTR 151026 (STRAIN+2 ¢ #¥RBOND+24 #TEXP)
COEFF = RZERO#29B8¢#STRAIN/(100NNQNHTEMPH:2, )

QUTRES = COEFF#(1224%TciMP+SUMSTR)
DELZRO = 298« #STRAIN*(122¢#*TEMP+SUMSTR)/Z(10000N0
1#TEMP#%2,)

DELGFR = COEFF * TEMP

CELCCR = COEFF#*SUMSTR/3700,
DLBOND = COEFF#24205

DLTEMP = =-122,28A%#COFFF

ERZRC = EXZRO(J)

ERGFR = 2444

ERCCR = 185a.

ERSOND EXBOND( )

tRTEMP = 2, : )
ERROR = SQRTF((DELZRO®ERZRO)#**24+(DELGFR*ERGFR) *#
12e+(DELCCRH#¥ERCCR) ##2 ¢+ (DLBOND*ERBOND ) #%2 ¢ +
2(DLTEMPRERTEMP ) ##2,)
PRINT 2+TEMP+sSTRAINJOUTRESHERROR
IF(STRAIN=-14004)20+20530
30 IF (TEMP =460.) 3219321532
321 CONTINUE
32 CCNTINUE
CALL EXIT
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TABLE AIII 5
Data for Computer Program

The information on each data card is laid out in the following

format:

*DATA

MBMAX MZMAX

XBOND, I=1 XBOND, I=2 . . . . . . . - . . XBOND, I=MBMAX

EXBOND, I=1 EXBOND, I=2 . . . . . . . . . EXBOND, I=MBMAX

XZERO, J=1 T = 20°K
XZERO, J=2 T = 40°K
XZERO, J= MZMAX T = 460°K
EXZERO, J =1 T = 20°K
EXZERO, J = 2 T = 40°K
EXZERO, J = MZMAX T = 460°K

€ W5 Cs Ap W W T R W D DGR ED AR N L WD G TR D R D D R G HD Gn M B AP R R R AR G D W ER AR AR A MD e Gm MD R AR e TR G G W W e s W e

* The following table (AIIT.6) gives an example of the data card
listing for strain gauges AA, BB, XX, and YY.



TABLE AlIII.6
STRAIN GAUGE CHARACTERISTICS DATA INPUT LISIING

* DATA
4 23
-26405 -134705 '899.0 _744.0
560 10.0 8.0 8.0

16046 20
15646 Sy
15340 ov
149,7 Bu
14646 luv
14440 120
14] 46 140
13947 by
138,42 180
13744 PAVIV
13743 £
137 ¢4 4 J
13840 ¢ b1}
13943 2By
141.2 30u
143.% 320
14642 3a)
14G,1 sou
15244 380
15601 400
16043 420
16445 a4y
16848 460
6.0 [V,
524 &)
4o LU
4,1 R0
365 loo
3.0 120
el 140
2e¢0 16U
leb 10u
102 [AVEV]
009 X4V
Oeb 24v
Ooth 261
De2 28N
0e2 300
Ce?2 320
0e2 340
De2 36y
De2 506y
Oe3 LU
0eb 424
Oe7 440
le1 4ou



B R L O R S

IR T e

{(a) Extensional vibrations :

Axial
extensional
motion

i
Ly

Radial
extensional
motion

(b) Bending modes :

S i
— ———

[y 1 § apme——

—

[ gy s o T e e s e

—— '

An axial mode - 2nd. axial mode shown as example

Radial modes

2nd radial mode

L

3rd radial mode

L
nodes ——

Figure 1. Vibratirnal forms of a thin cylinder
with closed ends.



p(t)dA

o. , axial
stress

main axis
of vessel

Fig. 2 Hoop and axial stresses acting on an element of the
cylinder as a result of a radially acting pressure, p(t).
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(B) Linear decay

p(t)=pm(1-t/T) for 0 t T p(t)=pm.e at
=0 for t T
P| P
Pm . | Pm
!
|
I
|
i
|
]
|
l ~
0 l e 0 > i
T (=1/a) t t; t
(D) Exponential x time (E) Linear rise, exp. decay
_ -at
p(t)—pmaet.e p(t)=pmt/t1 for 0 t t

-a(t-tl) for t t

=Py, © 1

Figure 3. Typical approximate mathematical forms for
blast loading.
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Fig. 4 Analogous dynamic systems. Comparison of the cylinder and
its heavy end cap to a simple spring-mass system.

TIME —=

DISTANCE —

Fig. 5 Space-time diagram for shock wave reflection process.
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Fig. 10 Strain and Pressure records, Test # CD 149
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are referred to as traces a,b,c, and d - lettering from the

top down,

Figures 10 & 11 continued.

Data to accompany photcgraphic records

ey

: RECORD TRACE STKRAIN CALIBRATION TEST CONDITIONS
CAUGE AND
LOCATION
Fig. 10 2 AA (9) 59.5/4,"/’}’cm Test No. CD 149
. . Mixture: 2H2+OZ
Upper b BB (9) 6L.5 Initial Pressure: 100mmHg
Ignitor: Primacord
Record ¢ XX (7) 63.0 Trigger FPosition - 2
a ¥y (7) 58.2 Sweenspeed: 0.3 ms/cm
Fig. 10 a Pressure 20.3 psi/ecm Test No. CD 149
Gauge (3) Mixture: 2H,%0,
Lower 0 e " Initial Pressure: 100mmiHg
R a b (3) Ignitor: Primacord
ecor c " (7) " Trigger Tosition - 2
A Sweepspeed: 1.0 ms/cm
éd 1 (9) ! ‘
i
Fig. 11 a AA (9) 149.54"/"/em| Test No. CD 150
Mixture: 2H2+02
- " 7,
Uppex b BB (9) 154.4 Initial Pressure: 200mmHg
. Ignitor: Primacord
Record c XX (7) 147.0 Trigger Position - 2
d YY (7) 146.0 Sweepspeed: 0.3 ms/cm
Fig. 11 a Pressure 20.3 psi/cm Test No. CD 150
Gauge (3) Mixture: 2H,+0,
Lower b v(5) " Initial Pressure: 200mmHg
Record Ignitor: Primacord
c " (7) " Trigger Position - 2
Sweepepeed: 1.0 ms/cm
d " (9) il
Note: To distinguish between the four traces on each record, they



TRACE STRAIN GAUGE | LOCATION CALIBRATION

NUMBER
a AA 9 66.0 "/"/cm
b BB 9 72.4 i fem
¢ |Pressure Gauge 9 20 psi/em
d XX 7 64.3 "/"/cm
e YY 7 63.6 "/"/em
f |Pressure Gauge 7 ’ 20 psi/em
g |Pressure Gauge 2 20 psi/em

$

Test No. CD 251; Mixture, 2H9+02; Initial Pressure,
100mmHg; Ignitor, Primacord; Trigger, Ionization Probe;

Horizontal Sweep Speed, 5.0 ms/cm.

Fig. 12 Records and Data for Test No. CD251
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Fig. 13 Variation of incident wsave pressure along
the length of the detonation tube for
2H,+0, mixture initially at 100 mm Hg with
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Fig. 14 Variation of reflected wave pressure with initial
mixture pressure for 2H2+02 mixture with Primacord

ignition,
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Fiz. 15 Enlarcemont of typical pressure record

Deta: Trace from station 7, Test CD143
100 mm Hg initial pressure
Mivture 2H2+02 (stoichiometric)

601 tyne prossure transducer with type 565 amplifier
Occilloscope sweep sveed 1,0 millisecond/cm

(1eft to right)
Vertical calibration - 20.32 psi/cm

The abeove figure, an enlargement of onc of the pressure
records from an actual test, is an example of the method used
to find an approximate mathematical form for the pressure
decay function. By simply drawing the best straight line
through the recording-—and, as may be seen, this 1s not an
unreasonable approximation=-the recoxrd can be reduced to

a function of the form:

p = Pm(l - t/T) for 0 t T
= () = for t T












7000

+ Calculated for sawtooth function,
2 msec decay time

6OOO O Strain gauge measurements at stat.on 9

O Strain gauge measurements at station 7

4000 S

&
S

HOOP STRESS, psi

2000

1000

P R

op e o GEPHE,

INITIAL PRESSURE, mmHg.

Fig. 19 Peak amplitudes oir analytical and experimental hoop
streaaes as a function of initial pressure . _



Strain H T,
Gauge AA gegf"
. N . —TN
. A ) A ~

Strain

Gauge BB E /\ /\//\\ /\AUL

) D Y IS {

B
B
D
¥

Theory \V / \V /

Pressure

|
[7
|

_ 0 C. 1.C msec.
TEST CD149 TIME

%)

Calibration data:

Strair gauge AA: 59.5 u"/"/cm
Strain Gauge BB: 61.5 ¢"/"/em
For the theoretical curve the sawtooth approximation

for blast loading was used, with pulse decay time,
T=2 ms-c

Fig. 20 Dynamic hoop response of vessel--comparison of
experimental and analytical results
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Fig. AIII.1 Strain and temperature sensitivity of a typical
semiconductor strain gauge
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RESISTIVITY, ohms - cm.

7ig. AILI.2 Gauge factor, G.F. ', and gauge constant,
C,'s as & function of the resistivity of
a” silicon semiconductor strain gauge
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Fig.AIll.4 Characteristic atvain - sensitivity curves for semiconductce strain nges
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Supply
Voltage LY

< Strein zauge
nominalliy
1200 120 n
~

»
[%

Voitagse ‘Sx‘/
%, .

237 o

Mg, AIII,7 Wheatstone Bridge Circuit for 120 strain gauge,

Supply
300 volts d.c.

15,000 2 l /
M"I v "'L l ( -0
Ballast resistor ‘
Strain gauge
= 120 n Output

O —o

Fig. ALIL.9 Constant ourrent circuit for a 120 strain gauge,
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AXII,11 Photograph of the strain-gauge circuit, showing
celibratiocn input~-output on the lefit, and the inputs
for the six operational channels on the right

, AIII.12 Experimental set-up for strain reccrding, showing the
. strain gauge eircuit, power supply, and oscilloscope
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Semiconductor Strain Gauge

Teble of Gauge Propsrties

é R Unbacked, unbonded resistance - 141 ohms within 1%
i G.F. ' Bastc Gauge Factor - 122.0 within 2% at 25°C

Cé Gauge constant - 3700 within 5% at 25°C

Thermal expansion ccefficient - 2.5 in/in/°F

Material - Cauge element of P-type silicon (cut on the
111 axis), mounted onto bakelite backing strip

Overall gauge length - 1/4 in

Backing dimensions - 3/8 x 3/16 in
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